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Since  metal  halide  perovskites  were  utilized  as  visible-
light-harvesting materials for solar cells in 2009, power conver-
sion  efficiencies  (PCEs)  for  metal  halide  perovskite  solar  cells
(PSCs) have already reached to a certified value of 25.7%, mak-
ing  PSCs  to  be  a  promising  next-generation  photovoltaic
technology[1−5].  Compositional  engineering of  perovskite  ma-
terials  is  an  effective  approach  for  achieving  highly  efficient
and stable PSCs[6−8]. Typical perovskite materials have a gener-
al formula ABX3,  where A is a monovalent cation, B a divalent
metal cation and X a halogen anion. The radii of each compon-
ent in perovskite material via Goldschmidt tolerance factor (t)
determine  the  crystallographic  stability  and  the  formation  of
the  3D  crystal  structure[9].  Therefore,  cation  and  anion  with
different  size  like  Cs,  methylammonium  (MA),  formamidini-
um  (FA),  I,  Br,  and  Cl  can  be  adopted  to  construct  perov-
skite  crystals,  resulting  in  bandgap  variation.  In  2009,  MA-
based  perovskites  were  first  used  as  sensitizers  in  liquid-
state  solar  cells,  producing  a  PCE  of  3.81%  with  extremely
poor stability (Table 1)[1].  Kim et al. used MAPbI3 in solid-state
mesoporous solar  cells,  achieving dramatically  improved per-
formance  (Table  1)[10, 11].  Since  then,  composition  engineer-
ing based on MAPbI3 has sprung up.  In 2013,  Seok et  al.  pro-
duced  bandgap  tunable  MAPbX3 solar  cells via substituting  I
with  Br[6].  Combined  with  solvent  engineering,  a  substitution
of  10–15  mol%  I  with  Br  in  MAPbI3 greatly  improved  the
device stability  in ambient atmosphere and a certified PCE of
16.2%  was  achieved  for  MAPb(I1–xBrx)3 (x =  0.1–0.15)  PSCs[12].
MAPbI3–xClx perovskites  exhibit  much  longer  carrier  diffusion
length  and  the  related  PSCs  gave  PCEs  >12%  and  >14%  for
mesoporous  and  planar  structure,  respectively[13, 14].  Cl  can
aid film crystallization to improve device performance and sta-
bility[15−17].

In  order  to  further  improve  PCE  and  stability,  FA  and  Cs
were  successively  applied  in  composition  engineering.  The
bandgap  of  MAPbI3 is  about  1.5  eV,  which  is  far  from  Shock-
ley-Queisser  (S-Q)  optimum[18, 19].  Substituting  MA  with  a
slightly  larger  monovalent  cation  FA  could  reduce  the  band-
gap  of  perovskite  to  S-Q  optimum.  What’s  more,  FA  exhibits
better  thermal  stability  than  the  volatile  MA  cation[20].  How-
ever, the degradation of black-phase FAPbI3 to yellow non-per-
ovskite phase under ambient conditions restricts the develop-
ment  of  FAPbI3 PSCs.  It  was  found  that  the  incorporation  of
MA  and  Br  ions  into  FAPbI3 can  effectively  stabilize  black-

phase perovskite  and enhance the crystallinity[21].  As  a  result,
FA1–xMAxPb(I1–yBry)3 composition  drew  attention  and  domin-
ated for  a long time[22−24].  PCEs exceeding 22% was achieved
in  FA1–xMAxPb(I1–yBry)3 PSCs  (Table  1),  together  with  a  long-
term stability, especially the thermal stability[25]. In 2016, Saliba
et  al.  introduced  Cs  into  FA1–xMAxPb(I1–yBry)3 to  further  im-
prove  crystallinity  of  the  perovskite  film  and  the  thermal
stability of PSCs[26].  They found that Cs-containing PSCs could
steadily  work  over  hundreds  of  hours  under  continuous  illu-
mination.  Since  then,  FA0.95–xMAxCs0.05Pb(I1–yBry)3 composi-
tion has  become one of  the  dominant  recipes  (Table  1)[27, 28].
Besides Cs, other alkali metals are used in composition engin-
eering[29].

Though the introduction of MA and Br is beneficial for pro-
ducing high-quality perovskite films,  it  induces a blue shift  of
absorption,  limiting  the  further  enhancement  of Jsc and  PCE.
And Br can cause phase segregation under long-term illumina-
tion[30].  With  the  volatile  nature  of  MA,  introducing  Br  and
MA  into  FA-based  perovskite  decreases  the  stability  of
PSCs[31].  Therefore,  scientists  continued  focusing  on  FAPbI3

and  devoted  great  efforts  to  obtain  MA-  and  Br-free  pure α-
phase  FAPbI3

[32].  Adding  methylammonium  chloride  (MACl)
into  FAPbI3 precursor  solution  could  overcome  phase  trans-
formation  of α-FAPbI3

[33].  MACl  induces  the  growth  of  (001)
plane of α-FAPbI3 and increases the crystallinity. Seok et al. ad-
ded  methylenediammonium  dichloride  (MDACl2)  into  FAPbI3

to  stabilize α-FAPbI3 and  achieved  a Jsc of  26.7  mA/cm2[31].
More  than  90%  of  the  initial  PCE  was  maintained  after  600-h
operation.  Besides  the  phase  transformation,  anion-vacancy
defects  at  grain boundaries  and at  FAPbI3 film surface inhibit
PCE improvement. Jeong et al. used pseudo-halide anion form-
ate  (HCOO−)  to  suppress  anion-vacancy  defects  and  to  in-
crease film crystallinity[34].  The resulting solar cells gave a PCE
of 25.6% (certified 25.2%) (Table 1).

Though PCE has been greatly improved, the long-term sta-
bility  of  organic/inorganic  hybrid  perovskites  cannot  satisfy
commercial  requirements.  To  tackle  this  issue,  all-inorganic
CsPbX3 and low-dimensional (LD) materials are tried. Without
volatile organic components, all-inorganic CsPbX3 cells exhib-
it  excellent  thermal  stability  and  desired  bandgaps  for  tan-
dem solar cells[35].  Because of more easily formed defects and
poor  surface  morphology,  the  PCE  for  all-inorganic  PSCs  is
still inferior to inorganic–organic hybrid counterparts[36]. Simil-
ar  to  FAPbI3,  how  to  stabilize  the  black  phase  and  passivate
the  defects  of  CsPbX3 is  very  important  for  achieving  high
PCE[37].  By  using  a  sequential  dripping  method  and  octylam-
monium  iodide  post-treatment,  Seok et  al.  made  uniform
and  pinhole-free  CsPbI3 film,  and  the  cells  gave  a  PCE  of
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20.37%[38].  Most recently, Meng et al. reported a facile and ef-
fective  defect  passivation  method  for  high-quality  CsPbI3

films  and  efficient  devices[39].  They  found  that  the  in-situ
grown  phenyltrimethylammonium  iodide  (PTAI)-based  LD
perovskites  (1D  PTAPbI3 and  2D  PTA2PbI4)  located  at  CsPbI3

grain boundaries and the film surface, which can not only sup-
press  non-radiative  recombination  but  also  stabilize  black-
phase  CsPbI3 to  prevent  moisture  intrusion.  As  a  result,  the
CsPbI3 cells  exhibited  a  record  efficiency  of  21.0%  with  high
stability (Table 1). Owing to excellent stability in ambient envir-
onment and under operating conditions, 2D Ruddlesden–Pop-
per (RP) perovskites with a formula of A2Bn−1PbnI3n+1 are recog-
nized as another promising candidate for PSCs[40, 41]. Their per-
formances  are  still  lower  than  3D  counterparts.  The  lower
PCE is mainly ascribed to quantum confinement effect, the en-
larged bandgap and in-plane orientation of  2D RP perovskite
with  respect  to  the  substrate[42].  Various  approaches,  includ-
ing solvent, additives, and cations engineering have been pro-
posed  to  make  vertically  directed  2D  RP  perovskite  to  im-
prove  device  performance.  Zhang et  al.  reported  pure  FA-
based  2D  PSCs  with  the  assistance  of  MACl  and  PbCl2 addit-
ives, which gave a record PCE of 21.07% (Table 1)[43].

In  short,  improving  device  stability  while  maintaining
high PCE stays a hot topic in PSC field. Adjusting cations to en-
hance  the  performance  of  2D  or  quasi-2D  perovskite  solar
cells will be an interesting approach. 
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